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Tsunamis and Tsunami Warning Systems: Talk Structure

-Tsunamis:

-Generation
-Physical characteristics

-Tsunami Detection:

	
 -Earthquake  Based
	
 -Tsunami Based

-Tsunami Forecasting:

	
 -Linearity in deep water.
	
 -Inversion of DART data.
	
 -Forecast Model Development.
              -Early events.
	
 -Chile, February 2010.
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Three	
  phases	
  of	
  tsunamis:
§ Generation
§ Propagation
§ Inundation
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Tsunami Generation

Typical method: earthquake at plate boundary
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Tsunamigenic Phenomena
• Meteorological Tsunamis.

Ciudadella, Spain, Tsunami  June 15, 2006: Slide1
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Tsunamigenic Phenomena
• Tsunamis generated by volcanic explosions: Krakatoa, 1883

• They have the potential to generate a meteorological tsunami.
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Tsunamigenic Phenomena

• Tsunamis generated by underwater land-slides: Lituya Bay, AK
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Tsunamigenic Phenomena
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Tsunamigenic Phenomena

•  Tsunamis generated by underwater land-slides: Aisén, Chile.

•  Slope failure.
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Tsunamigenic Phenomena

•  Tsunamis generated by underwater land-slides: Aisén, Chile.

• Visible scars.
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Tsunamigenic Phenomena

• Tsunamis generated by underwater land-slides: Aisén, Chile.

• Inundation.
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Tsunamigenic Phenomena

• Tsunamis meteorite impacts.
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Tsunamigenic Phenomena

•  Tsunamis meteorite impacts.
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Tsunamigenic Phenomena
• Tsunamis generated by explosion of underwater methane deposits: Deep Water 
Horizon?

Tsuji-san, 2009
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Physical Characteristics of a Tsunami in Deep Water

• Maximum Amplitude, z:  from a few centimeters to a half meter.

• Typical Wavelength: Λ = 300 km  (period ~ 600 s-3000s)

• A tsunami is always composed of several waves.

• Propagation Speed: Speed depends on ocean depth, H.

In practice: H=5 Km, v=220 m/s  (~=800 Km/h)
(approximate cruise velocity of a commercial airliner)
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Physical Characteristics of a Tsunami in Deep Water

• A tsunami is always a long wave (alt. A wave in shallow water).

• A tsunami is a non-dispersive wave.

Example of dispersive wave behavior
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Wave	
  Dispersion,	
  cont’d
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Wave	
  Dispersion,	
  cont’d
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Wave	
  Dispersion,	
  cont’d
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Wave	
  Dispersion,	
  cont’d
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Physical Characteristics of a Tsunami in Shallow Water

• Propagation Speed: Speed depends on ocean depth, H.

• The leading part of the wave slows down as it enters shallow waters, the 
trailing part of the wave is still in deep water and moving faster than the 
leading part. This causes the wave height to increase and the wavelength 
to shorten.
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Refraction:	
  waves	
  bend	
  when	
  
they	
  go	
  through	
  a	
  slower	
  medium

31
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Physical Characteristics of a Tsunami in Shallow Water.

• Tsunami wave heights in shallow water can reach tens of meters.

• Typical wavelengths will range between 10-20 Km.

• The size of the tsunami wavelength makes it much more destructive than 
storm waves. 
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Un tsunami no llega siempre con una onda 
negativa inicial !!!.

Kalutara, Sri Lanka, 2004
Quickbird satellite
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What can we do about forecasting 
Tsunamis?

• Deploy Detection Hardware.

• Develop algorithms to interpret in-coming data.

• Develop numerical models to forecast/assess  
tsunami impact on the coast.
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Tsunami Inversion based on satellite altimetry . Sumatra 2004 tsunami
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Tsunami Warning Systems: DART Systems
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Dart Stations Position

Wednesday, November 28, 2012



DART time series Chile 2010 tsunami
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Our	
  deep-­‐water	
  propagation	
  
model	
  run	
  database...

§ What	
  do	
  we	
  constrain	
  with	
  the	
  deep-­‐water	
  
DART	
  measurement?

41

Wednesday, November 28, 2012



West Pacific East Pacific

Locations of the unit sources for pre-computed tsunami events.
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Indian Ocean Atlantic Ocean

Locations of the unit sources for pre-computed tsunami events.
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Any	
  combination	
  of	
  
solutions	
  to	
  the	
  linear	
  
equations	
  of	
  motion	
  is	
  
also	
  a	
  solution:

Linearity...

§ Why	
  can	
  we	
  just	
  add	
  arbitrary	
  pre-­‐run	
  
models	
  together	
  during	
  a	
  forecast?

44
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Riemann invariants Eigenvalues

Characteristic Form of the Non-linear Shallow Water  Equations.

In deep water the equations are linear!!
We can do propagation database!!
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Deep-­‐Water	
  Linearity

46
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Illustration of Deep Water Linearity
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Illustration of Deep Water Linearity
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Linearity allows for the reconstruction of an arbitrary 
tsunami sources using elementary building blocks 
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For linearity u << gh
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How	
  do	
  we	
  produce	
  the	
  right	
  
combination	
  during	
  an	
  event?

§ We	
  know	
  the	
  deep-­‐water	
  tsunami	
  obeys	
  
linear	
  equations	
  of	
  motion

§ We	
  have	
  many,	
  many	
  pre-­‐run	
  deep-­‐water	
  
model	
  runs	
  in	
  a	
  “Propagation	
  Database”
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Inversion

§ WebSIFT	
  demo
§ http://sift.pmel.noaa.gov/websift
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http://sift.pmel.noaa.gov/websift


Break
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Inundation...

§ Now	
  we	
  have	
  the	
  “best-­‐fit”	
  deep-­‐water	
  
propagation	
  run...

§ How	
  do	
  we	
  get	
  the	
  solution	
  to	
  the	
  harbor?

54
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Inundation:	
  3	
  telescoping	
  
grids
§ 3	
  nested	
  grids	
  used	
  to	
  model	
  the	
  shoaling	
  
wave	
  evolution	
  from	
  deep-­‐water	
  to	
  shallow	
  
bay,	
  harbor,	
  or	
  coastline

§ optimized	
  to	
  run	
  quickly
§ takes	
  forcing	
  from	
  linearly-­‐combined,	
  pre-­‐run	
  
Propagation	
  model	
  output
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Why model separately?
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Reason 1 : Different scales

Location of 
Hilo tide-gage

Hilo

10324 mi
7 mi

Wednesday, November 28, 2012



Reason 1 : Different scales

Location of 
Hilo tide-gage

Hilo

10324 mi
7 mi

Wednesday, November 28, 2012



Reason 1 : Different scales

Location of 
Hilo tide-gage

Hilo

10324 mi
7 mi

Wednesday, November 28, 2012



Reason 1 : Different scales

Location of 
Hilo tide-gage

Hilo

10324 mi
7 mi

Wednesday, November 28, 2012



Propagation scale

June 10, 1996 Andreanov tsunami
(Titov & Gonzalez, 1997)
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Inundation model scale

Andreanov tsunami 
“inundation” model 
comparison with tide-gage 
data
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Scale comparison
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Small scale inundation effects

Port Vila, Vanuatu. Hypothetical Mw8.1 tsunami
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Reason 2: Inundation dynamics

	

Simulation of the Aonae 
inundation

	

(1993 Okushiri tsunami)
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Tsunami Forecast for 
Ocean Shores, WA
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NOAA Tsunami Forecast
11/17/2003 Amchitka tsunami
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Mw=7.5

NOAA Tsunami Forecast
11/17/2003 Amchitka tsunami
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Mw=7.5

3cm

-3
3cm

-3

NOAA Tsunami Forecast
11/17/2003 Amchitka tsunami
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3cm

-3
3cm

-3

NOAA Tsunami Forecast
11/17/2003 Amchitka tsunami Model coastal forecast
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Hilo Harbor bathymetry

Model coastal forecast
11/17/2003 Amchitka tsunami
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Hilo Harbor bathymetry
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The November 15, 2006 Central Kuril Tsunami
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The November 15, 2006 Central Kuril Tsunami
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The November 15, 2006 Central Kuril Tsunami
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The November 15, 2006 Central Kuril Tsunami
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The November 15, 2006 Central Kuril Tsunami

Forecast vs Observation
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The November 15, 2006 Central Kuril Tsunami

Forecast vs Observation
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Nawiliwili Comparison 
(Impacted by Cruise Ship?)
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70

Tsunami Forecast Overview, Chile 2010
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Tsunami Forecast Overview, Chile 2010
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Results: Tide gauge comparisons, Chile 2010
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August 10, 2009 Andaman

73

23401

Time since earthqake, hrs

CM
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80 -
400 m

Courtesy of Kato et al. 
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80 -
400 m

Courtesy of Kato et al. 
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Local Forecast Test
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Local Forecast Test
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Local Forecast Test
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Summary	
  -­‐	
  NOAA’s	
  numerical	
  
forecasting	
  techniques

§ Earthquakes	
  are	
  the	
  major	
  generation	
  mechanism,	
  
but	
  tsunamis	
  can	
  have	
  more	
  than	
  one.

§ The	
  source	
  is	
  complicated,	
  so	
  we	
  measure	
  the	
  
wave	
  directly.

§ DART	
  buoy	
  data	
  helps	
  us
to	
  constrain	
  the	
  model

§ Inverted	
  propagation
model	
  is	
  used	
  to	
  force	
  the
inundation	
  model.

76
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Stop	
  Here
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Developing	
  Inundation	
  Grids

§ Reference	
  model	
  uses	
  the	
  highest	
  quality	
  and	
  
resolution	
  available	
  for	
  a	
  community

§ Model	
  from	
  different	
  sources	
  is	
  combined	
  to	
  
form	
  3	
  nested	
  grids

§ Tested	
  against	
  historical	
  data,	
  and	
  for	
  
robustness

§ Highly	
  optimized	
  grids	
  are	
  derived	
  from	
  the	
  
reference	
  grids

78
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Bathy/topo 
data sources
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Bathy/topo 
data sources

Population density
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Bathy/topo 
data sources

Population density
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Resolution: 36’’ to 120’’ 
Grid Size: 700x500 to
 196x150
Time Step: 2 to 12 sec
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Resolution: 36’’ to 120’’ 
Grid Size: 700x500 to
 196x150
Time Step: 2 to 12 sec

Resolution: 6’’ to 12’’ 
Grid Size: 917x597 to
 361x257
Time Step: 0.4 to 1.5 sec
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Resolution: 36’’ to 120’’ 
Grid Size: 700x500 to
 196x150
Time Step: 2 to 12 sec

Resolution: 6’’ to 12’’ 
Grid Size: 917x597 to
 361x257
Time Step: 0.4 to 1.5 sec

Resolution: 1’’ to 13’ 
Grid Size: 872x500
 to 291x150
Time Step: 0.2 to
 1.5 sec
Run Time: 8+ hours
            to 10- min
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Graphics by Liujuan Tang UW/JISAO & NOAA/NCTR

 Monitor time series degradation at Warning Point and/or Tide Gage by 
comparison with Reference Run. (No tide-gage data available for Seaside)

Creation of the SIM Set of Grids
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